Microbial inhibitors of the fungus Pseudogymnoascus destructans, the causal agent of white-nose syndrome in bats
نویسندگان
چکیده
Pseudogymnoascus destructans, the fungus that causes white-nose syndrome in hibernating bats, has spread across eastern North America over the past decade and decimated bat populations. The saprotrophic growth of P. destructans may help to perpetuate the white-nose syndrome epidemic, and recent model predictions suggest that sufficiently reducing the environmental growth of P. destructans could help mitigate or prevent white-nose syndrome-associated bat colony collapse. In this study, we screened 301 microbes from diverse environmental samples for their ability to inhibit the growth of P. destructans. We identified 145 antagonistic isolates, 53 of which completely or nearly completely inhibited the growth of P. destructans in co-culture. Further analysis of our best antagonists indicated that these microbes have different modes of action and may have some specificity in inhibiting P. destructans. The results suggest that naturally-occurring microbes and/or their metabolites may be considered further as candidates to ameliorate bat colony collapse due to P. destructans.
منابع مشابه
Comparison of the White-Nose Syndrome Agent Pseudogymnoascus destructans to Cave-Dwelling Relatives Suggests Reduced Saprotrophic Enzyme Activity
White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental ...
متن کاملFungus Causing White-Nose Syndrome in Bats Accumulates Genetic Variability in North America with No Sign of Recombination
Emerging fungal diseases of wildlife are on the rise worldwide, and the white-nose syndrome (WNS) epidemic in North American bats is a catastrophic example. The causal agent of WNS is a single clone of the fungus Pseudogymnoascus destructans. Early evolutionary change in this clonal population has major implications for disease ecology and conservation. Accumulation of variation in the fungus t...
متن کاملUsing a Novel Partitivirus in Pseudogymnoascus destructans to Understand the Epidemiology of White-Nose Syndrome
White-nose syndrome is one of the most lethal wildlife diseases, killing over 5 million North American bats since it was first reported in 2006. The causal agent of the disease is a psychrophilic filamentous fungus, Pseudogymnoascus destructans. The fungus is widely distributed in North America and Europe and has recently been found in some parts of Asia, but interestingly, no mass mortality is...
متن کاملMolecular Characterization of a Heterothallic Mating System in Pseudogymnoascus destructans, the Fungus Causing White-Nose Syndrome of Bats
White-nose syndrome (WNS) of bats has devastated bat populations in eastern North America since its discovery in 2006. WNS, caused by the fungus Pseudogymnoascus destructans, has spread quickly in North America and has become one of the most severe wildlife epidemics of our time. While P. destructans is spreading rapidly in North America, nothing is known about the sexual capacity of this fungu...
متن کاملGENETICS OF SEX Molecular Characterization of a Heterothallic Mating System in Pseudogymnoascus destructans, the Fungus Causing White-Nose Syndrome of Bats
White-nose syndrome (WNS) of bats has devastated bat populations in eastern North America since its discovery in 2006. WNS, caused by the fungus Pseudogymnoascus destructans, has spread quickly in North America and has become one of the most severe wildlife epidemics of our time. While P. destructans is spreading rapidly in North America, nothing is known about the sexual capacity of this fungu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017